Supporting Information

Iridium-decorated carbon nanotubes as cathode catalysts for Li-CO₂ batteries with a highly efficient direct Li₂CO₃ formation/decomposition capability

Author: Jun Wang^{a‡}, Yanjie Zhai^{b‡}, Feng Dang^{a*}, Lanling Zhao^c, Qing Xia^a, Deyuan Li^a, Dongdong Zhuang^d, Xiao Zhang^{b*}
Affiliations : *a.* Jun Wang, Feng Dang, Qing Xia, Deyuan Li
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China.
E-mail: <u>dangfeng@sdu.edu.cn</u> (F. Dang)

b. Yanjie Zhai, Xiao Zhang
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong SAR, China
E-mail: <u>xiao1.zhang@polyu.edu.hk</u> (X. Zhang)

c. Lanling Zhao School of Physics, Shandong University, Jinan 250100, China

d. Dongdong Zhuang
 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013,
 China

Corresponding Author(s)*: E-mail: <u>dangfeng@sdu.edu.cn</u> (F. Dang); <u>xiao1.zhang@polyu.edu.hk</u> (X. Zhang)

‡ These authors contributed equally.

Keywords: Li-CO₂ Batteries, Electrocatalysis, Cathode Catalyst, Ir-CNTs Composite, DFT Calculations

Figure S1. SEM image of the Ir-CNT composite.

Figure S2. Electrochemical Impedance Spectroscopy (EIS) dates at different stages of Ir-CNT cathodes.

Figure S3. FTIR spectra of Ir-CNT cathodes at initial, 1st discharging and 1st charging stage.

Figure S4. Schematic illustrations of (a) Li_2CO_3 monomer, (b) Li_2CO_4 monomer and (c) Ir (111) models.

Figure S5. Difference charge densities and corresponding binding models of (a) $Li_2C_2O_4$ monomer on Ir (111) plane and (b) Li_2CO_3 monomer on Ir (111) plane.

Catalyst	Discharge product	Main Electrolyte	Current Density (mA g ⁻¹)/ Fixed Capacity (mAh g ⁻¹)/ Cycles	Ref. No
Ir-coated GDLs	Li ₂ CO ₃	DOL	100/500/150	1
Li2MnO3	Li2CO3	DMC	/800/30	2
CNTs	Li ₂ CO ₃	polymer	500/1000/20	3
CPE@CNTs	Li ₂ CO ₃	polymer	2.5 mA/993.3 mAh/44	4
CC@Mo ₂ C	Li ₂ C ₂ O ₄	TEGDME	50 μA cm ⁻² /100 μAh cm ⁻² /20	5
M02C/CNT	Li ₂ C ₂ O ₄	TEGDME	20 μA/100 μAh/40	6
Ru/NS-G	Li ₂ CO ₃	TEGDME	100/1000/100	7
MnO@NC-G	Li ₂ CO ₃	TEGDME	50/1000/15	8
CoPPc	Li ₂ CO ₃	TEGDME	0.05 mA cm ⁻² //50	9
Adj. Co/GO	Li ₂ CO ₃	TEGDME	100/1000/100	10
Ir/CNFs	Li ₂ CO ₃	TEGDME	50/1000/45	11
Ir-CNTs	Li ₂ CO ₃	TEGDME	100/1000/100	This
				Work

Table 1. Performance comparison of the Ir-CNT cathode with other typical cathodes

 reported in the literature.

[1] J. X. Li, L. Wang, Y. Zhao, S. Y. Li, X. Fu, B. J. Wang, and H.S. Peng, Adv. Funct. Mater., 2020, 30, 2001619.

[2] Z. Q. Zhuo, K. H. Dai, R. M. Qiao, R. Wang, J. P. Wu, Y. L. Liu, J. Y. Peng, L. Q. Chen, F. Pan,
 Z. X. Shen, G. Liu, H. Li. T. P. Devereaux, and W. L. Yang, Joule, 2021, 5, 975.

[3] C. Li, Z. Y. Guo, B. C. Yang, Y. Liu, Y. G. Wang, and Y. Y. Xia, Angew. Chem. Int. Ed., 2017, 56, 9126.

[4] X.F. Hu, Z.F. Li, J. Chen, Angew. Chem. Int. Ed., 2017, 56, 5785.

[5] J. W. Zhou, X. L. Li, C. Yang, Y. C. Li, K. K. Guo, J. L. Cheng, D. W. Yuan, C. H. Song, J. Lu, and B. Wang, Adv. Mater., 2019, 31, 1804439.

[6] Y.Y. Hou, J.Z. Wang, L.L. Liu, Y.Q. Liu, S.L. Chou, D.Q. Shi, H.K. Liu, Y.P. Wu, W.M. Zhang, and J. Chen, Adv. Funct. Mater., 2019, 27, 1700564.

[7] Y. Qiao, J. W. Wu, J. Zhao, Q. L. Li, P. J. Zhang, C. S. Hao, X. L. Liu, S. T. Yang, Y. Liu, Energy Storage Mater., 2020, 27, 133.

[8] S. W. Li, Y. Liu, J. W. Zhou, S. S. Hong, Y. Dong, J. M. Wang, X. Gao, P. F. Qi, Y. Z. Han, and B. Wang, Energy & Environ. Sci., 2019, 12, 1046.

[9] J. M. Chen, K. Y. Zou, P. Ding, J. Deng, C. Y. Zha, Y. P. Hu, X. Zhao, J. L. Wu, J. Fan, and Y. G. Li, Adv. Mater., 2019, 31 1805484.

[10] B. W. Zhang, Y. Jiao, D. L. Chao, C. Ye, Y. X. Wang, K. Davey, H. K. Liu, S. X. Dou, and S. Z. Qiao, Adv. Funct. Mater., 2019, 29, 1904206.

[11] C. Y. Wang, Q. M. Zhang, X. Zhang, X. G. Wang, Z. J. Xie, and Z. Zhou, Small, 2018, 14, 1800641.